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For fluids with molecules in which the electron density can be represented by a rapidly 
converging expansion in spherical harmonics, the intensity of the X-ray scattering can 
be obtained from a theory by Steele and Pecora. We have re-expanded their result using 
a different reference frame. This allows us to give a more intuitive physical interpretation 
of the coefficients of the expansion of the binary correlation function. For any type of 
molecules, the small angle scattering is given by the compressibility term plus pure 
orientational contributions. For molecules that are closely spherical, the orientational 
contribution is of second order in the coefficients of the higher spherical form factors, 
and therefore small. We have calculated the form factors for NH,, HF, and H,O. In 
all of these molecules, the coefficient of the spherical part is much larger than all the 
others. This simplifies the interpretation of the experimental data since only three para- 
meters are needed, instead of the six necessary if the orientational part were important. 

1. BASIC FORMALISM 

The theory of X-ray scattering has been discussed by many authors. For mole- 
cules which are not too asymmetric, in the sense that their electron density can be 
represented by a rapidly converging multipole expansion, a rather general theory 
has been formulated by Steele and Pecora [I]. We intend to reformulate their 
result using a different reference frame. Our expansion is somewhat less symmetric 
than Steele and Pecora’s but has a more direct physical and geometrical inter- 
preation. Our procedure relies heavily on the beautiful work of A. ben Reuven 
and N. D. Gershon [2] for light scattering. 

The reference frame is attached to an arbitrarily chosen molecule i. The position 
of another molecule j is given by a vector R = R, 8, v and its orientation by three 
Euler angles 5L = 01, /3, y. The two-body correlation function is then of the form 
dR al- 
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Physically, the R dependence (which we will call “angular” part) and the s2 
dependence (“orientational” part) have a different effect on the scattered intensity. 
The small angle X-ray scattering behavior is given by the orientational part of the 
correlation function and is quadratic in the coefficients of the nonspherical part 
of the molecular electron density. The pure angular part however is linear in 
these coefficients and is relevant to the scattering at large angles. 

Following van Hove and Glauber [3], the cross section for elastic scattering can 
be written as 

(1.1) 

where (du/dw) is the differential cross section for the radiation at solid angle w; 
~=k-k,,, where k, k, are the wave vectors of the scattered and incident 
beams. The factors ai give the amplitude of the radiation scattered by molecule i 
and finally Rij = Ri - Ri is the center to center distance between the molecules 
i and j. The brackets indicate the ensemble average of the quantity between them. 

The quantities ai have been discussed by Steele and Pecora [l]. In an arbitrary 
reference frame x we have 

ai = Q 
I 

p(x) eiK’x dx, (1.2) 

where p(x) is the electron density (or neutron scattering density) and Q is a scat- 
tering factor which depends on the nature of the incident radiation. For polarized 
X-rays, 

Q=$ (1 - sin2 8, cos2 &)1’2. (1.3) 

For unpolarized X-rays, 

Q=$ (1 + cos2 &)1/2. 

For neutrons, 

Q= 1; P(X) = c &p,(x). 
a 

(1.4) 

In these formulas, e is the electron charge, m is the electron mass, c is the velocity 
of the light in the vacuum, 8, is the angel between k and k, and $O is the angle 
between the displacement vectors of the electric fields for the incident and scattered 
fields. In the case of neutron scattering X represents the nuclear coordinates and 
S, is the neutron cross section for the nucleus 01. We will be mostly concerned with 
X-ray scattering in what follows. 
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The standard form of Rayleigh’s expansion is 

pc.x = z. i”(2m + lww 0 cqj;)] jm(Kx), 
where we used the 0 to indicate tensor scalar product [2,4], 

am 0 b” = 5 (-)“-“a~pb,“. 
u=-nt 

In (1.6) j,,(x) are the spherical Bessel functions, and 

Cum(K) = ( ,,“Q l )1’2(-i)” Yzu(k) 

(1.6) 

(1.7) 

(1.8) 

are the standarized spherical harmonics of Fano and Racah [4], and the notation 
rZ means angular part of vector K. Y,,(i) is the usual surface (spherical) harmonic. 

Using (1.6) in (1.2) we get 

(1.9) 

with 

a,“(i) = Q(2m + 1) 1 dr d%jm(Kr) C,,m(i) p(x) r2. (1.10) 

Using the well-known theorems for the transformation of irreducible tensorial 
sets [5] and the fact that p(x) is a scalar, we get 

a,“(i) = f a?(O) II;,( 
p’=--m 

(1.11) 

where the nonspherical form factors aurn are now defined in a frame attached to 
the molecule and D?,(Q) are the matrix elements of the rotation operator [5]. 
Qi = 01~ , /3i , yi represent the Euler angles that give the orientation of the molecule i 
with respect to an arbitrary frame. From (1.10) we see that 

a:* = (-)“-“aT?u . (1.12) 
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Replacing (1.6) and (1.9) into (1.1) and also using (1.12), we get 

do 
- = m;,, (9m+z-n(2~ + 1) ; az(K~idtcm(4 0 ~mciii,N dw 

x [a”(i) 0 C?@)][aQ) 0 CL(i)]>. (1.13) 

This expression can be put into a more convenient form using a theorem of tensor 
algebra [4] 

0 {[cyl;) @ cyr;p 0 ql;)}“. 
Here we have used the definitions of the cross product 

(1.14) 

(1.15) 

where the angular coupling coefficients (nv I IAmp) have been defined in the 
literature [2,4, 51. Equations (1.14) is the scalar product of two tensors, one of 
which depends only on the direction of K, that is, on the geometry of the experiment, 
while the other depends only molecular parameters. Since we are dealing with 
isotropics fluids this factor has to be a scalar quantity, which means that only the 
term with p = 0 is different from zero after the averaging over the ensemble has 
been done. Using 

(0 0 1 hp) = (-yy21 + 1)-l/Z &,6,,-, 

and the definitions of the scalar and direct products, we get after some algebra, 

(1.17) 

where 

qz = (i)“‘“-“{[Cfqc) @ cyqp 0 cyiq>, (1.18) 

(1.19) 

Using standard tensor algebra we can show in a straight forward manner that 

Q% = ; ;f ;) ( (2m + 1)1/2(-)“, 

where we have used the standard notation for Wigner’s 3j symbols. 



596 BLUM 

To compute Fz , notice first that since it is a scalar, it does not depend on the 
choice of coordinate system. We may therefore choose a frame attached to molecule 
i. Using again the definitions (1.7), (1.1 l), and (1.15) we get 

FZ = c (-Y-“(2m + 1)1’2 (r’, ; ;, a/(O) a;,(o) v,A,l\’ 

Replacing (1.20) and (1.21) into (1.17), we get 

Performing now the ensemble average, we get (the details follow closely Ref. [l]): 

+$ = P C I aum I2 + i& C C (2m + 1X-P (o o o) 1 
m n I 

m.P m.n.1 ",h,r\' 

( m x ; :) q,"(o) a:@> j dR d%if(R, 52) - 11 hn(KR) 

x D;,"(Q) c;(R)\. (1.23) 

Let us now discuss this expression. Using the fact that for EC = 2 1 k 1 sin &, + 0, 
the asymptotic form of the spherical Bessel functions is 

j,(K&) s’& (KR)m/(2F72 + I)! !. (1.24) 

Then, the limiting scattering law for very small angles is given by the term with 
m = 0, 

a: I2 j dR dsZ j&R) x [g(R, a) - l] 

The first term in (1.25) is the “seIf” term, and is K independent. The second term is 
the compressibility term and can be obtained from thermodynamic considerations. 
The third and last term is due to pure orientation correlations. It is wavelength 



X-RAY SCATTERING 597 

independent if we are in the region where &(KR) m 1 and therefore contributes 
also to depolarization effects in light scattering. Notice that the correction to the 
compressibility are of second order in uVn, so that in many cases, when aoo < a”* 
they will amount to only very small corrections. 

When only linear terms in the nonspherical form factors are relevant, then we 
have to have either I, x’ = 0 or n, v = 0. 

In the first case we need m, p = n, v and we get a contribution of the form 

dR dQ g(R, Sz) j&R) C$(R). (1.26) 

This contribution does not depend on the mutual orientation of the molecules, 
but does depend on the direction of the vector i% in the frame attached to molecule i. 
We have called this the angular part of the correlation function. 

In the second case, when n, v = 0 we get 

If we rotate the reference frame through an angle -sL, R -+ -R’ (which is 
equivalent to taking j as the reference molecule), we get 

A, = (&j a,,” 1 (-)“-“apm j dR da g(R, Q) C’$(R).j,(/cR), (1.28) 
m.!J 

where now 8’ are the angular coordinates of the center of molecule i in a frame 
attached to molecule j. Obviously, both these contributions are equal. We have 
then 

t 2 = P /x 1 apm I2 + (&) I uoo I2 j dR da j,(KR)[g(R, Q) - 111 + 24 
(1.29) 

For nearly spherical molecules, we have only scattering due to the “angular” 
part of the correlation function. The pure orientational correlations will not 
contribute to the scattering, so that we need to find only a 3-dimensional correlation 
function g(R) to interpret the scattering data. Considerations similar to that of 
Narten and Levy [6] on the number of experiments necessary to fully determine 
this correlation function apply here. Notice however that a different experiment 
will lead us to a completely different expansion: Although the X-ray scattering will 
depend on only a few coefficients because the series is rapidly converging, this will 
not be the case in a neutron scattering experiment, where we expect a poorly 
converging series. We hope to discuss these matters in more detail in the future. 
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2. FORM FACTOR CALCULATION FOR WATER AND SIMILAR MOLECULES 

The nonspherical form factors, defined by Eq. (1.10) can be evaluated from 
electronic wavefunctions. The procedure is very similar to the one used by 
Stewart [7] in the calculation of his generalized X-ray scattering factors for struc- 
tural analysis. Our case is however somewhat different because most of the electron 
density is centered around one atom (the oxygen) while only a fraction is effectively 
centered around the hydrogen atoms. This fact was used by Moccia [8] to obtain 
SCF-MO, one-center expansions for various simple molecules, and water among 
them [9]. These wavefunctions are quite good when compared with the best 
SCF available, the calculation of Neumann and Moskowitz [lo]. The difference 
of about 0.17 ‘A in the total energy is due to a great extent to the fact that the one- 
centered wavefunctions are rather poor representations of the electron density 
around the hydrogen nucleus, and while these contributions are important for the 
energy computation, they are much less significant to the X-ray scattering form 
factors, since only a small part of the electron cloud is contained in them [l 11. 

Quite generally, the electron density is 

p(r) = 2 f I uli I27 (2.1) 
i=l 

where 12 is now the numer of MO’s of the molecule and ?Pi the molecular orbital. 
In terms of the atomic orbitals we have 

(2.2) 

Using the Slater-Moccia [8] orbitals 

yi = [(2&) q-1’2 (24-+1’2 p-lp~~SJiMi ) (2.3) 

where S,iMi is the tesseral spherical harmonic, and together with the other symbols, 
has been defined by Moccia [8]. 

Replacing (2. I), (2.2), and (2.3) into (1.10) we get 

with 

aMJ = Q(2.I + 1) c 1 ADiADjF(.h14 I J,MiJiMj) H(J, r-j), (2.4) 
2, i.j 

and 
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TABLE I 

Form factors for water from Moccia’s [8] orbitals. The units for the form factors 
are the standard electron units. The reference frame is that of Moccia’s paper. 
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0.0 10.00 

0.5 9.78 

1.0 9.15 

1.5 8.25 

2.0 7.23 

2.5 6.22 

3.0 5.30 

3.5 4.52 

4.0 3.88 

4.5 3.37 

5.0 2.96 

5.5 2.65 

6.0 2.40 

6.5 2.21 

7.0 2.05 

7.5 1.93 

8.0 1.83 

8.5 1.75 

9.0 1.68 

9.5 1.62 

10.0 1.57 

10.5 1.53 

11.0 1.49 

11.5 1.45 

12.0 1.42 

12.5 1.38 

13.0 1.35 

13.5 1.32 

14.0 1.28 

14.5 1.25 

15.0 1.22 

15.5 1.19 

16.0 1.16 

16.5 1.13 

17.0 1.10 

0.00 

0.17 

0.29 

0.36 

0.35 

0.30 

0.22 

0.14 

0.08 

0.03 

0.00 

-0.02 

-0.03 

-0.04 

-0.04 

-0.04 

-0.03 

-0.03 

-0.02 

-0.02 

-0.01 

-0.01 

-0.01 

-0.01 

0.00 

0.00 

0.00 0.00 

0.00 0.00 

0.00 -0.02 

0.01 -0.04 

0.01 -0.05 

0.01 -0.06 

0.01 -0.06 

0.01 -0.05 

0.01 -0.04 

0.00 -0.03 

-0.02 

-0.01 

0.00 

0.00 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 
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TABLE 11 

Form factors for Ammonia from Moccia’s [S] orbitals. The form factors are given in 
standard electron units and the frame for the molecule is that of Moccia’s paper 

K(b) 4’ 

0.0 10.00 
0.5 9.68 
1.0 8.82 
1.5 7.63 
2.0 6.37 
2.5 5.23 
3.0 4.29 
3.5 3.56 
4.0 3.01 
4.5 2.62 
5.0 2.33 
5.5 2.12 
6.0 1.96 
6.5 1.84 
7.0 1.75 
7.5 I .68 
8.0 1.62 
8.5 1.56 
9.0 1.52 
9.5 I .48 

10.0 1.44 
10.5 1.40 
11.0 1.37 
11.5 1.33 
12.0 1.30 
12.5 1.26 
13.0 1.23 
13.5 1.19 
14.0 1.15 
14.5 1.12 
15.0 1.08 
15.5 1.05 
16.0 1.01 
16.5 0.98 
17.0 0.95 

a,’ 

0.00 
-0.16 
m--O.27 
--0.32 
-0.30 
-0.23 
-0.16 
-0.10 
-0.04 
-0.01 

0.01 
0.02 
0.03 
0.03 
0.03 
0.02 
0.02 
0.02 
0.01 
0.01 
0.01 

aoz 
0.00 

-0.01 

-0.03 
-0.05 
-0.07 
-0.08 
-0.08 
-0.07 
-0.05 
-0.04 
-0.02 
-0.01 

0.00 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

ao3 

0.00 

0.00 

0.00 
0.01 
0.02 
0.03 
0.04 
0.04 
0.04 
0.03 
0.03 
0.02 
0.02 
0.01 
0.01 
0.01 
0.01 
0.01 
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TABLE III 

Form factors for HF from Moccia’s orbitals [8]. The form factors are 
given in standard electron units and the frame for the molecule is that of Moccia’s paper 

__----.__ -__~ .~.-~ ~~~ .~ 
0.0 10.00 0.00 

0.5 9.84 0.11 

1.0 9.39 0.21 

1.5 8.72 0.26 

2.0 7.92 0.27 

2.5 7.08 0.24 

3.0 6.25 0.20 

3.5 5.49 0.15 

4.0 4.82 0.09 

4.5 4.24 0.05 

5.0 3.76 0.02 

5.5 3.35 -0.01 

6.0 3.01 -0.02 

6.5 2.73 -0.03 

7.0 2.50 -0.03 

7.5 2.31 -0.03 

8.0 2.15 -0.03 

8.5 2.02 -0.03 

9.0 1.91 -0.03 

9.5 1.82 -0.02 

10.0 1.74 -0.02 

10.5 1.68 -0.02 

11.0 1.62 -0.01 

11.5 1.57 -0.01 

12.0 1.53 -0.01 

12.5 1.49 -0.01 

13.0 1.45 

13.5 1.42 

14.0 1.38 

14.5 1.35 

15.0 1.32 

15.5 1.30 

16.0 1.27 

16.5 1.24 

17.0 1.21 

0.00 

0.01 

0.02 

0.04 

0.05 

0.07 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

-0.01 

-0.01 

-0.01 

-0.02 

-0.02 

-0.02 

-0.02 

-0.02 

-0.02 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 
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The integrals (2.5) are simply related to the Clebsch-Gordon coefficients and can 
be found in tables [5]. The integrals (2.6) can be evaluated analytically [7]. 

We have computed the form factors for H,O, NH,, and HF. The results are 
shown in the Tables I-III. The results show that the main two contributions arise 
from the u,,O and uol terms. The uol term however does not give any deformation of 
of the spherical shape. It merely represents a shift of the center of the electron 
cloud. The fact that the J = 2 terms are very small means that there is almost no 
distortion from a spherical shape into an ellipsoidal one. Although this might be 
true to a certain extent, it could also be due to the use of one-centered MO, which 
tend to round off the electron distribution. At any rate for the reasons that we 
discussed above, wo do not expect this to cause a serious error. 
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